
Review : Integrating Clipped 
Spherical Harmonics Expansions

• Spherical Harmonics expansion
– Any spherical function can be decomposed in an 

infinite SH expansion
– Spherical Harmonics are an orthonormal basis of 

functions defined on the unit sphere

• Power cosine integration
– Recursive integration
– Store previous term and compute next power cosine

• SH approximates any function on sphere
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Continuous Refraction in Real World
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Overview
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• Fundamental part of physics
– [Chandrasekhar 1950, 1960] introduces refractive radiative transfer 

equation w/o counting for refractive media

– [Pomraning 1973, 2005] introduces radiance divided by square of 
radiative index as a conservative quantity -> strongly simplified 
equations�𝐿𝐿 =

𝐿𝐿
𝑛𝑛2
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Overview
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Purpose of this paper : 
General transporting equation
- accounts for complex media 
- conservation of the energy
- suitable for rendering.
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Physics Background

• Hamiltonian mechanics
– Developed as a reformulation of classical mechanics and 

predicts the same outcomes as non-Hamiltonian classical 
mechanics.

– Classical mechanical system -> 
a phase space composed of coordinates and 
corresponding momentum



Physics Background

• Photons in 6D phase space
– Position 𝒑𝒑 = (𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)
– Momentum 𝒒𝒒 = 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3
– Density 𝑓𝑓(𝒑𝒑,𝒒𝒒, 𝑡𝑡)
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• Substitute canonical coordinates
𝒑𝒑 = 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 → 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝒙𝒙
𝒒𝒒 = 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 → ∅, 𝜇𝜇, 𝑣𝑣 = (𝒘𝒘,𝑣𝑣)
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Light Transport in Phase Space

• Participating media with no self-emission
– Considering only absorption and scattering

• Light transport in phase space

𝑄𝑄 𝑓𝑓 = 𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡

+ 𝜕𝜕(𝑓𝑓𝑥̇𝑥)
𝜕𝜕𝑥𝑥

+ 𝜕𝜕(𝑓𝑓𝑦̇𝑦)
𝜕𝜕𝑦𝑦

+ 𝜕𝜕(𝑓𝑓𝑧̇𝑧)
𝜕𝜕𝑧𝑧

+ 𝜕𝜕(𝑓𝑓∅̇)
𝜕𝜕∅

+ 𝜕𝜕(𝑓𝑓𝜇̇𝜇)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑓𝑓𝑣̇𝑣)
𝜕𝜕𝑣𝑣

-> Q : phase space density term, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

-> later we substitute this f term for radiance for rendering 
compatibility.



Light Transport in Phase Space

• Participating media(no self-emission)
– Absorption

– Scattering

– Combination

• Relationship between radiance and density 
function[Pomraning 2005]
𝐿𝐿 𝑥𝑥,𝑤𝑤, 𝑣𝑣, 𝑡𝑡 = 𝑣𝑣𝑔𝑔ℎ𝑣𝑣𝑣𝑣(𝒙𝒙,𝒘𝒘,𝑣𝑣, 𝑡𝑡)



Hamiltonian Optics

• Geometric optics [Born and Wolf 1999]
– Wave length << size of scene objects
– Superposition of discrete wave packets (photons)
– Fermat’s principle
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Refractive Radiative Transfer 
Equation



Refractive RTE (RRTE)

• Important steps
– Start with light transport in phase space
– Substitute density f with radiance L
– Exploit differential equations for light propagation

– Aim toward relationships where �𝐿𝐿 = 𝐿𝐿
𝑛𝑛2

is a fundamental 

quantity

do complex calculations ...
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𝑑𝑑�𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕�𝐿𝐿
𝜕𝜕𝑡𝑡

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕

�𝐿𝐿
𝜕𝜕𝑥𝑥

+ 𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑
� 𝜕𝜕

�𝐿𝐿
𝜕𝜕𝑤𝑤

= −𝜎𝜎𝑡𝑡 �𝐿𝐿 + 𝜎𝜎𝑠𝑠
4𝜋𝜋 ∫Ω 𝑃𝑃 𝜔𝜔′,𝜔𝜔 �𝐿𝐿(𝑥𝑥,𝜔𝜔′, t)d𝜔𝜔′

�𝐿𝐿 𝑥𝑥,𝑤𝑤, 𝑡𝑡 = 𝐿𝐿(𝑥𝑥,𝑤𝑤,𝑡𝑡)
𝑛𝑛 𝑥𝑥 2 -> Basic radiance



Difference between RTE and RRTE

• Basic radiance

– �𝐿𝐿 𝑥𝑥,𝑤𝑤, 𝑡𝑡 = 𝐿𝐿(𝑥𝑥,𝑤𝑤,𝑡𝑡)
𝑛𝑛 𝑥𝑥 2

– The most noticeable difference between RTE and RRTE
– Basic radiance remains constant when a ray crosses a 

material boundary

• Total derivative

– 𝑑𝑑�𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕�𝐿𝐿
𝜕𝜕𝑡𝑡

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕

�𝐿𝐿
𝜕𝜕𝑥𝑥

+ 𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑
� 𝜕𝜕

�𝐿𝐿
𝜕𝜕𝑤𝑤

total temporal directional angular



Difference between RTE and RRTE

• Continue Refraction
– Significant advantage of RRTE
– Comprehensive description of continuous refraction.



Solution for Steady-State RRTE

• Steady-State RRTE
– First, define a function x(s)

• yields the position on a curved ray

– Second, we require exponential factor 𝜏𝜏(𝑥𝑥0, 𝑥𝑥1) [Arvo
1993] in terms of transmittance

– Third, define a basic source term, 𝐽𝐽(𝑥𝑥,𝑤𝑤)
• describes how much basic radiance is emitted or in-scattered at 

point x in direction w



Solution for Steady-State RRTE

• Steady-State RRTE



Rendering

• Basic radiance along curved beam from RRTE

• Solution with non-linear photon mapping
– Trace photons with curved trajectories
– Gather (basic) radiance with curved ray tracing

• Radiance estimation



Experiments



Bending a Laser Beam



Bouncing Laser Beams



Cheers



Conservation of Energy



Conclusion



Conclusion

• Light transport equation for continuous 
refraction
– Strictly based on physics
– Basic radiance as fundamental quantity
– Complies with discontinuous function

• Involved theory, but simple to apply in practice
– Continuously scale radiance with 1/𝑛𝑛2

– Visual impact is relevant for physically accurate 
results



Thank you for listening
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